We present three evolutionary symbolic regression-based classification algorithms for binary and multinomial datasets: GPLearnClf, CartesianClf, and ClaSyCo. Tested over 162 datasets and compared to three state-of-the-art machine learning algorithms -- XGBoost, LightGBM, and a deep neural network -- we find our algorithms to be competitive. Further, we demonstrate how to find the best method for one's dataset automatically, through the use of a state-of-the-art hyperparameter optimizer.
翻译:我们为二元和多元数据集提出了三种进化的基于回归的象征性分类算法:GPLearnClf、CartesianClf和ClaSyCo。测试了162个数据集,与三种最先进的机器学习算法 -- -- XGBoost、LightGBM和深层神经网络 -- -- 我们发现我们的算法是竞争性的。此外,我们演示了如何通过使用最先进的超参数优化器,自动找到个人数据集的最佳方法。