The main difficulty in solving the discrete source or eigenvalue problems of the operator $ d^*d $ with iterative methods is to deal with its huge kernel, for example, the $ \nabla \times \nabla \times $ and $- \nabla ( \nabla \cdot ) $ operator. In this paper, we construct a kind of auxiliary schemes for their discrete systems based on Hodge Laplacian on de Rahm complex. The spectra of the new schemes are Laplace-like. Then many efficient iterative methods and preconditioning techniques can be applied to them. After getting the solutions of the auxiliary schemes, the desired solutions of the original systems can be recovered or recognized through some simple operations. We sum these up as a new framework to compute the discrete source and eigenvalue problems of the operator $ d^*d $ using iterative method. We also investigate two preconditioners for the auxiliary schemes, ILU-type method and Multigrid method. Finally, we present plenty of numerical experiments to verify the efficiency of the auxiliary schemes.
翻译:解决操作员的离散源或元值问题的主要困难在于用迭代方法处理其巨大的内核,例如, $\nabla\time\ times\ times $和$-nabla (\nabla\cdot) $ 操作员的离散源或元值问题。 在本文件中,我们根据Hodge Laplacecian关于德拉赫姆综合体的离散系统,为操作员的离散系统设计了一种辅助计划。新计划的光谱类似Laplace。 然后,许多高效的迭接方法和先决条件技术可以应用到它们。在获得辅助方案解决方案后,原始系统的预期解决方案可以通过一些简单的操作得到恢复或确认。我们把这些组合为一个新的框架,用迭代法计算离散源和操作员的元值问题。 我们还调查了两个辅助方案的先决条件,即ILU型方法和Mulgrid方法。 最后,我们提出了大量的数字实验,以核实辅助方案的效率。