We study {\em online} active learning of homogeneous halfspaces in $\mathbb{R}^d$ with adversarial noise where the overall probability of a noisy label is constrained to be at most $\nu$. Our main contribution is a Perceptron-like online active learning algorithm that runs in polynomial time, and under the conditions that the marginal distribution is isotropic log-concave and $\nu = \Omega(\epsilon)$, where $\epsilon \in (0, 1)$ is the target error rate, our algorithm PAC learns the underlying halfspace with near-optimal label complexity of $\tilde{O}\big(d \cdot polylog(\frac{1}{\epsilon})\big)$ and sample complexity of $\tilde{O}\big(\frac{d}{\epsilon} \big)$. Prior to this work, existing online algorithms designed for tolerating the adversarial noise are subject to either label complexity polynomial in $\frac{1}{\epsilon}$, or suboptimal noise tolerance, or restrictive marginal distributions. With the additional prior knowledge that the underlying halfspace is $s$-sparse, we obtain attribute-efficient label complexity of $\tilde{O}\big( s \cdot polylog(d, \frac{1}{\epsilon}) \big)$ and sample complexity of $\tilde{O}\big(\frac{s}{\epsilon} \cdot polylog(d) \big)$. As an immediate corollary, we show that under the agnostic model where no assumption is made on the noise rate $\nu$, our active learner achieves an error rate of $O(OPT) + \epsilon$ with the same running time and label and sample complexity, where $OPT$ is the best possible error rate achievable by any homogeneous halfspace.
翻译:我们研究的是{mathbb{R ⁇ d$} 以对抗性噪音积极学习相同半空 ${mathb{R ⁇ d$} 以对抗性噪音积极学习相同半空空间, 噪音标签的总体概率限制在$\nu$。 我们的主要贡献是在多元时间运行的 Perepron- 类似在线主动学习算法, 并且在边际分布为异端日对数的日志和 $=\\\\\\\ eplón} =\ 美元, 其中$\ epsil=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx