We consider compact representations of collections of similar strings that support random access queries. The collection of strings is given by a rooted tree where edges are labeled by an edit operation (inserting, deleting, or replacing a character) and a node represents the string obtained by applying the sequence of edit operations on the path from the root to the node. The goal is to compactly represent the entire collection while supporting fast random access to any part of a string in the collection. This problem captures natural scenarios such as representing the past history of an edited document or representing highly-repetitive collections. Given a tree with $n$ nodes, we show how to represent the corresponding collection in $O(n)$ space and $O(\log n/ \log \log n)$ query time. This improves the previous time-space trade-offs for the problem. Additionally, we show a lower bound proving that the query time is optimal for any solution using near-linear space. To achieve our bounds for random access in persistent strings we show how to reduce the problem to the following natural geometric selection problem on line segments. Consider a set of horizontal line segments in the plane. Given parameters $i$ and $j$, a segment selection query returns the $j$th smallest segment (the segment with the $j$th smallest $y$-coordinate) among the segments crossing the vertical line through $x$-coordinate $i$. The segment selection problem is to preprocess a set of horizontal line segments into a compact data structure that supports fast segment selection queries. We present a solution that uses $O(n)$ space and support segment selection queries in $O(\log n/ \log \log n)$ time, where $n$ is the number of segments. Furthermore, we prove that that this query time is also optimal for any solution using near-linear space.


翻译:我们考虑相似字符串收藏的缩略图, 支持随机访问查询。 字符串的收集由根树提供, 树上边缘由编辑操作标记( 插入、 删除或替换字符), 节点代表从根到节点的路径上应用编辑操作序列获得的字符串 。 目标是在支持快速随机访问某个字符串中的任何部分的同时, 缩略地代表整个收藏 。 这个问题包含自然情景, 比如代表过去编辑文档的历史或高重复性收藏。 在树上标有 $ 的节点, 我们展示如何在$ (n) 的空间和$ (log n/log\log\log\log n) 查询中代表相应的收藏 。 这样可以改善之前的时间空间交易的偏移。 此外, 我们显示一个更低的框点证明, 使用近线间空间的任意访问权限, 我们也可以显示如何将问题降低到这个直线段的自然几何度选择问题 $ 。 将一个最小的平流部分用于 美元 平流部分 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年4月2日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员