Good polynomials are the fundamental objects in the Tamo-Barg constructions of Locally Recoverable Codes (LRC). In this paper we classify all good polynomials up to degree $5$, providing explicit bounds on the maximal number $\ell$ of sets of size $r+1$ where a polynomial of degree $r+1$ is constant, up to $r=4$. This directly provides an explicit estimate (up to an error term of $O(\sqrt{q})$, with explict constant) for the maximal length and dimension of a Tamo-Barg LRC. Moreover, we explain how to construct good polynomials achieving these bounds. Finally, we provide computational examples to show how close our estimates are to the actual values of $\ell$, and we explain how to obtain the best possible good polynomials in degree $5$.
翻译:良好的多元值是本地可回收代码(LRC)的塔莫-巴格构造的基本对象。 在本文中,我们将所有好的多元值分类到5美元的水平,在美元+1美元(美元+1美元)的数组最大值最高值上提供明确的界限。 在美元+1美元(美元+1美元)不变的情况下,我们提供计算示例,以显示我们的估计接近美元=4美元的实际值。这直接为塔莫-巴格LRC的最大长度和尺寸提供了明确的估计值(最高值为$O(sqrt{q})$,并提供了解析常数常数。此外,我们解释了如何构建达到这些界限的好多元值。最后,我们提供了计算示例,以显示我们的估计值接近于美元=4美元的实际值的程度,我们解释如何获得最高值为5美元的最佳多数值。