Many challenges from natural world can be formulated as a graph matching problem. Previous deep learning-based methods mainly consider a full two-graph matching setting. In this work, we study the more general partial matching problem with multi-graph cycle consistency guarantees. Building on a recent progress in deep learning on graphs, we propose a novel data-driven method (URL) for partial multi-graph matching, which uses an object-to-universe formulation and learns latent representations of abstract universe points. The proposed approach advances the state of the art in semantic keypoint matching problem, evaluated on Pascal VOC, CUB, and Willow datasets. Moreover, the set of controlled experiments on a synthetic graph matching dataset demonstrates the scalability of our method to graphs with large number of nodes and its robustness to high partiality.
翻译:自然界的许多挑战都可以作为图表匹配问题来制定。 先前的深层次学习方法主要考虑完全的双面匹配设置。 在这项工作中,我们研究了与多面周期一致性保障更普遍的部分匹配问题。 根据最近对图表的深层学习进展,我们提议了一种新的数据驱动方法,用于部分多面匹配,该方法使用一个对象对单面的配方,并学习抽象宇宙点的潜在表现。 拟议的方法提高了语义关键点匹配问题中的艺术状态,在Pascal VOC、CUB和Willow数据集中进行了评估。 此外,合成图形匹配数据集的一组受控实验表明,我们用大量节点的图表及其稳健度可调整到高度偏颇。