This study introduces a novel computational framework for Robust Topology Optimization (RTO) considering imprecise random field parameters. Unlike the worst-case approach, the present method provides upper and lower bounds for the mean and standard deviation of compliance as well as the optimized topological layouts of a structure for various scenarios. In the proposed approach, the imprecise random field variables are determined utilizing parameterized p-boxes with different confidence intervals. The Karhunen-Lo\`eve (K-L) expansion is extended to provide a spectral description of the imprecise random field. The linear superposition method in conjunction with a linear combination of orthogonal functions is employed to obtain explicit mathematical expressions for the first and second order statistical moments of the structural compliance. Then, an interval sensitivity analysis is carried out, applying the Orthogonal Similarity Transformation (OST) method with the boundaries of each of the intermediate variable searched efficiently at every iteration using a Combinatorial Approach (CA). Finally, the validity, accuracy, and applicability of the work are rigorously checked by comparing the outputs of the proposed approach with those obtained using the particle swarm optimization (PSO) and Quasi-Monte-Carlo Simulation (QMCS) methods. Three different numerical examples with imprecise random field loads are presented to show the effectiveness and feasibility of the study.
翻译:本研究引入了一个用于强势地形优化的新计算框架(RTO),考虑到不精确的随机字段参数。与最坏情况方法不同,目前的方法为各种情景结构的中值和标准偏差以及优化的表层布局提供了上下界限。在拟议方法中,不精确随机的字段变量是利用不同信任间隔的参数化pbox 来确定的。Karhunen-Lo ⁇ eve(K-L)扩展以提供不精确随机字段的光谱描述。线性超定位方法与正方函数的线性组合一起使用线性超定位方法,为结构合规的第一和第二顺序统计时刻获取明确的数学表达方式。然后,进行间隙灵敏度分析,采用Othogoal相似性变异(OST)方法,在每次迭代中都使用组合法(CA-CA)有效搜索的中间变量的界限。最后,对工作的有效性、准确性和可适用性进行了严格检查,将拟议方法的产出与使用粒子蒸发系统优化(PSO)和Simasimal-imloimalimalimalimalimalestal Qex Festal-exestal 和Simal-Casimal-Casimal-Crealital-Ical eximpolvical 和Syal eximpoltical Q ex imal ex exitalital ex ex ex expoltipoltipal ex Q) 和Smal 和Simal-colticolvical ex 和Smoltical exmal 和Smal ex ex ex 和S- ex- ex ex- 1- 1- 1-cal ex- 1- 1- 1- 1- 1- 1-cal 1-cal 1-cal 1-cal 1-cal 1-cal- 1-cal-cal-cal-cal- 1-cal-cal-cal- 1-cal- 1-cal- 1-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-