This study introduces a novel computational framework for Robust Topology Optimization (RTO) considering imprecise random field parameters. Unlike the worst-case approach, the present method provides upper and lower bounds for the mean and standard deviation of compliance as well as the optimized topological layouts of a structure for various scenarios. In the proposed approach, the imprecise random field variables are determined utilizing parameterized p-boxes with different confidence intervals. The Karhunen-Lo\`eve (K-L) expansion is extended to provide a spectral description of the imprecise random field. The linear superposition method in conjunction with a linear combination of orthogonal functions is employed to obtain explicit mathematical expressions for the first and second order statistical moments of the structural compliance. Then, an interval sensitivity analysis is carried out, applying the Orthogonal Similarity Transformation (OST) method with the boundaries of each of the intermediate variable searched efficiently at every iteration using a Combinatorial Approach (CA). Finally, the validity, accuracy, and applicability of the work are rigorously checked by comparing the outputs of the proposed approach with those obtained using the particle swarm optimization (PSO) and Quasi-Monte-Carlo Simulation (QMCS) methods. Three different numerical examples with imprecise random field loads are presented to show the effectiveness and feasibility of the study.


翻译:本研究引入了一个用于强势地形优化的新计算框架(RTO),考虑到不精确的随机字段参数。与最坏情况方法不同,目前的方法为各种情景结构的中值和标准偏差以及优化的表层布局提供了上下界限。在拟议方法中,不精确随机的字段变量是利用不同信任间隔的参数化pbox 来确定的。Karhunen-Lo ⁇ eve(K-L)扩展以提供不精确随机字段的光谱描述。线性超定位方法与正方函数的线性组合一起使用线性超定位方法,为结构合规的第一和第二顺序统计时刻获取明确的数学表达方式。然后,进行间隙灵敏度分析,采用Othogoal相似性变异(OST)方法,在每次迭代中都使用组合法(CA-CA)有效搜索的中间变量的界限。最后,对工作的有效性、准确性和可适用性进行了严格检查,将拟议方法的产出与使用粒子蒸发系统优化(PSO)和Simasimal-imloimalimalimalimalimalestal Qex Festal-exestal 和Simal-Casimal-Casimal-Crealital-Ical eximpolvical 和Syal eximpoltical Q ex imal ex exitalital ex ex ex expoltipoltipal ex Q) 和Smal 和Simal-colticolvical ex 和Smoltical exmal 和Smal ex ex ex 和S- ex- ex ex- 1- 1- 1-cal ex- 1- 1- 1- 1- 1- 1-cal 1-cal 1-cal 1-cal 1-cal 1-cal- 1-cal-cal-cal-cal- 1-cal-cal-cal- 1-cal- 1-cal- 1-cal-cal-cal-cal-cal-cal-cal-cal-cal-cal-

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
22+阅读 · 2021年12月19日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员