The problem of finding the largest induced balanced bipartite subgraph in a given graph is NP-hard. This problem is closely related to the problem of finding the smallest Odd Cycle Transversal. In this work, we consider the following model of instances: starting with a set of vertices $V$, a set $S \subseteq V$ of $k$ vertices is chosen and an arbitrary $d$-regular bipartite graph is added on it; edges between pairs of vertices in $S \times (V \setminus S)$ and $(V \setminus S) \times (V \setminus S)$ are added with probability $p$. Since for $d=0$, the problem reduces to recovering a planted independent set, we don't expect efficient algorithms for $k=o(\sqrt{n})$. This problem is a generalization of the planted balanced biclique problem where the bipartite graph induced on $S$ is a complete bipartite graph; [Lev18] gave an algorithm for recovering $S$ in this problem when $k=\Omega(\sqrt{n})$. Our main result is an efficient algorithm that recovers (w.h.p.) the planted bipartite graph when $k=\Omega_p(\sqrt{n \log n})$ for a large range of parameters. Our results also hold for a natural semi-random model of instances, which involve the presence of a monotone adversary. Our proof shows that a natural SDP relaxation for the problem is integral by constructing an appropriate solution to it's dual formulation. Our main technical contribution is a new approach for constructing the dual solution where we calibrate the eigenvectors of the adjacency matrix to be the eigenvectors of the dual matrix. We believe that this approach may have applications to other recovery problems in semi-random models as well. When $k=\Omega(\sqrt{n})$, we give an algorithm for recovering $S$ whose running time is exponential in the number of small eigenvalues in graph induced on $S$; this algorithm is based on subspace enumeration techniques due to the works of [KT07,ABS10,Kol11].


翻译:在给定的图形中找到最大诱导平衡的双叶基子子图的问题是 NP- 硬的。 这个问题与找到最小的奥氏分子周期反转器的问题密切相关。 在这项工作中, 我们考虑以下实例模式: 从一套脊椎开始 美元, 一套美元=subseteque Vk美元, 并在其中添加一个任意的 美元- 定期双叶基子图; 在 $S\ 时间( Vsetminus S) 和 $( V\ setminus S) 的双螺旋体( 美元) 美元 美元 ; 美元 美元- 美元 的奥氏分子反翻转 。 由于 $=0, 问题会降低到恢复一个独立设置的数据集, 我们的双叶平面的双叶基电路( 美元) 直径解算法可能让一个问题普遍化。 当我们以美元为正值的双叶方平方平面图 时, 我们的正解的Sev18 将一个自然解算成一个正常的 Ral 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月1日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月29日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员