As the perception range of LiDAR expands, LiDAR-based 3D object detection contributes ever-increasingly to the long-range perception in autonomous driving. Mainstream 3D object detectors often build dense feature maps, where the cost is quadratic to the perception range, making them hardly scale up to the long-range settings. To enable efficient long-range detection, we first propose a fully sparse object detector termed FSD. FSD is built upon the general sparse voxel encoder and a novel sparse instance recognition (SIR) module. SIR groups the points into instances and applies highly-efficient instance-wise feature extraction. The instance-wise grouping sidesteps the issue of the center feature missing, which hinders the design of the fully sparse architecture. To further enjoy the benefit of fully sparse characteristic, we leverage temporal information to remove data redundancy and propose a super sparse detector named FSD++. FSD++ first generates residual points, which indicate the point changes between consecutive frames. The residual points, along with a few previous foreground points, form the super sparse input data, greatly reducing data redundancy and computational overhead. We comprehensively analyze our method on the large-scale Waymo Open Dataset, and state-of-the-art performance is reported. To showcase the superiority of our method in long-range detection, we also conduct experiments on Argoverse 2 Dataset, where the perception range ($200m$) is much larger than Waymo Open Dataset ($75m$). Code is open-sourced at https://github.com/tusen-ai/SST.
翻译:随着LiDAR的感知范围扩大,基于 LiDAR 的 3D 对象探测方法日益有助于自动驾驶的远程感知。 主流 3D 对象探测器通常会建立密度大的地貌图, 其成本与感知范围相比是四倍的, 使得它们几乎无法扩大到长程设置。 为了能够进行有效的远程检测, 我们首先提议一个完全稀疏的天体探测器。 FSD+ 建在一般稀疏的 voxel 编码和新颖的稀疏实例识别模块上。 SIR 将点归为实例, 并应用高效的以实例为特征提取。 以实例为根据的分类方法组合了缺失的数据点, 并应用了高效的随机特征提取。 中心特征缺失的问题会阻碍完全分散的结构的设计。 为了进一步享受完全稀疏的特性的好处, 我们利用时间信息来消除数据冗余, 并推荐一个叫FSDDG+。 FSD+++ 首次生成残留点, 显示连续框架之间的点变化。 剩余点, 连同前几个前的地面点, 形成超稀少的输入数据数据数据数据数据数据, 大大减少了数据冗余度和计算值, 和计算轨道 。 我们在Orecial- prode- prode- rodu