With the advent of Neural Radiance Field (NeRF), representing 3D scenes through multiple observations has shown remarkable improvements in performance. Since this cutting-edge technique is able to obtain high-resolution renderings by interpolating dense 3D environments, various approaches have been proposed to apply NeRF for the spatial understanding of robot perception. However, previous works are challenging to represent unobserved scenes or views on the unexplored robot trajectory, as these works do not take into account 3D reconstruction without observation information. To overcome this problem, we propose a method to generate flipped observation in order to cover unexisting observation for unexplored robot trajectory. To achieve this, we propose a data augmentation method for 3D reconstruction using NeRF by flipping observed images, and estimating flipped camera 6DOF poses. Our technique exploits the property of objects being geometrically symmetric, making it simple but fast and powerful, thereby making it suitable for robotic applications where real-time performance is important. We demonstrate that our method significantly improves three representative perceptual quality measures on the NeRF synthetic dataset.
翻译:翻转观察生成和优化:用于神经放射场的未观测视图覆盖
翻译后的摘要:
使用神经放射场(NeRF)表征三维场景的多个观察方式已经显示出卓越的性能提升。由于这种先进的技术可以通过插值密集的3D环境来获得高分辨率渲染,因此已经有各种方法提出在机器人感知的空间理解中应用NeRF。然而,以前的工作在表示未观察场景或视图,以及在未探索的机器人轨迹上都具有挑战性,因为这些工作并没有考虑没有观察信息的3D重建。为了解决这个问题,我们提出了一种方法来生成翻转观察,以覆盖未探索的机器人轨迹上不存在的观察。为了实现这一点,我们提出了一种使用NeRF进行3D重建的数据增强方法,通过翻转观察图像并估计翻转相机的6DOF姿态来实现。我们的技术利用对象几何对称的属性,使它简单而快速且强大,从而使它适用于实时性很重要的机器人应用程序。我们证明了我们的方法在NeRF合成数据集上显著提高了三项代表性感知质量测量指标。