Self-awareness is the key capability of autonomous systems, e.g., autonomous driving network, which relies on highly efficient time series forecasting algorithm to enable the system to reason about the future state of the environment, as well as its effect on the system behavior as time progresses. Recently, a large number of forecasting algorithms using either convolutional neural networks or graph neural networks have been developed to exploit the complex temporal and spatial dependencies present in the time series. While these solutions have shown significant advantages over statistical approaches, one open question is to effectively incorporate the global information which represents the seasonality patterns via the time component of time series into the forecasting models to improve their accuracy. This paper presents a general approach to integrating the time component into forecasting models. The main idea is to employ conditional neural fields to represent the auxiliary features extracted from the time component to obtain the global information, which will be effectively combined with the local information extracted from autoregressive neural networks through a layer-wise gated fusion module. Extensive experiments on road traffic and cellular network traffic datasets prove the effectiveness of the proposed approach.
翻译:暂无翻译