Sequential recommendation requires the recommender to capture the evolving behavior characteristics from logged user behavior data for accurate recommendations. However, user behavior sequences are viewed as a script with multiple ongoing threads intertwined. We find that only a small set of pivotal behaviors can be evolved into the user's future action. As a result, the future behavior of the user is hard to predict. We conclude this characteristic for sequential behaviors of each user as the Behavior Pathway. Different users have their unique behavior pathways. Among existing sequential models, transformers have shown great capacity in capturing global-dependent characteristics. However, these models mainly provide a dense distribution over all previous behaviors using the self-attention mechanism, making the final predictions overwhelmed by the trivial behaviors not adjusted to each user. In this paper, we build the Recommender Transformer (RETR) with a novel Pathway Attention mechanism. RETR can dynamically plan the behavior pathway specified for each user, and sparingly activate the network through this behavior pathway to effectively capture evolving patterns useful for recommendation. The key design is a learned binary route to prevent the behavior pathway from being overwhelmed by trivial behaviors. We empirically verify the effectiveness of RETR on seven real-world datasets and RETR yields state-of-the-art performance.
翻译:序列建议要求建议者从登录用户行为数据中捕捉不断演变的行为特征,以得出准确的建议。 然而, 用户行为序列被视为一个脚本, 并同时存在多个不断连接的线索。 我们发现只有一小部分关键行为才能演变成用户的未来行动。 因此, 用户的未来行为很难预测。 我们得出每个用户作为行为路径的相继行为的特征。 不同的用户有他们独特的行为路径。 在现有的顺序模型中, 变压器表现出捕捉全球依赖特征的巨大能力。 但是, 这些模型主要是利用自我注意机制, 对所有以往的行为进行密集的分布, 使得最终的预测被微不足道的行为压倒了, 没有对每个用户进行调整。 在本文中, 我们用新的路径关注机制构建了“ 推荐者变压器” 。 RETR 可以动态地规划为每个用户指定的行为路径, 并保持通过这一行为路径来激活网络的活力, 以有效捕捉到对建议有用的模式。 关键设计是一种学习的二进式路径, 防止行为路径被虚微行为行为动作压过。 我们用了7 TR 的状态验证了数据结果。