Multi-types of behaviors (e.g., clicking, adding to cart, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users' multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex behavior dependencies is crucial for multi-behavior prediction. The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input. However, different behaviors may reflect different aspects of user preference, which means that some irrelevant interactions may play as noises to the target behavior to be predicted. To address the aforementioned limitations, we introduce multi-interest learning to the multi-behavior recommendation. More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors. CKML introduces two advanced modules, namely Coarse-grained Interest Extracting (CIE) and Fine-grained Behavioral Correlation (FBC), which work jointly to capture fine-grained behavioral dependencies. CIE uses knowledge-aware information to extract initial representations of each interest. FBC incorporates a dynamic routing scheme to further assign each behavior among interests. Additionally, we use the self-attention mechanism to correlate different behavioral information at the interest level. Empirical results on three real-world datasets verify the effectiveness and efficiency of our model in exploiting multi-behavior data. Further experiments demonstrate the effectiveness of each module and the robustness and superiority of the shared and specific modelling paradigm for multi-behavior data.


翻译:多类型行为模式(如点击、添加手工艺、购买等)在多数现实世界建议情景中广泛存在,这有利于学习用户多面偏好。由于多种类型的行为明确显示了依赖性,因此,有效的模拟复杂行为依赖性对于多种行为预测至关重要。最先进的多行为模式学习行为依赖不同的行为,与作为投入的所有历史互动不相干。然而,不同行为可能反映用户偏好的不同方面,这意味着一些不相关的互动可能作为目标行为预测的噪音而发挥作用。为了应对上述限制,我们引入多端行为模块的多利学习。更具体地说,我们提出一个新的“Carse-f-fine-en-en-en-en-en-en-en-en-encenvication-多利学习(CKML)”框架,以学习不同行为的共同和行为模式。CKKML为进一步引入两个高级模块,即Carse-gray-al-acretainal Excial Excial-al-al-deal-al-al-lively-al-al-livelopal-al-al-al-livelomal-al-al-al-al-al-al-al-al-livelom-al-al-al-al-al-al-al-al-ligal-al-al-lixal-al-al-al-al-al-al-lixal-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-lation-lation-lation-lation-lation-lation-lation-al-al-al-al-al-al-lation-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2021年6月27日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员