项目名称: 均衡问题解集性质研究
项目编号: No.11301571
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 彭再云
作者单位: 重庆交通大学
项目金额: 22万元
中文摘要: 本项目主要对向量/集值均衡问题解集性质进行研究。首先,在非凸/非单调且不需要解集信息的前提下讨论均衡问题解集的下半连续性,并使其标量化解集不是单值的而是多值的。然后,建立新的非线性标量化结果,并利用这些结果来探讨向量/集值优化与均衡问题解集的稳定性。其次,在更弱的假设下建立强均衡问题有效解集的稠密性定理,从而深入讨论其解集的连通性与半连续性;结合非凸向量优化理论的方法与技巧,探索向量/集值均衡问题近似解性质(如:Holder/Aubin性质)研究的新路子。最后,讨论扰动向量/集值均衡问题解集映射的集序列收敛性,并试图获得均衡问题Hadamard-适定性研究方面的突破。作为应用,我们将对交通网络均衡及经济网络均衡等问题的均衡流性质进行定性与定量分析。上述问题的研究不仅可以丰富和发展最优化和均衡问题的理论、方法和技巧,而且可以为交通设计、经济与金融以及社会发展等领域提供新的工具。
中文关键词: 均衡问题;解集性质;解集映射;稳定性;近似解
英文摘要: This project mainly study properties of solution sets to vector/set-valued equilibrium problems. Neither use the assumptions of convexity and monotonicity nor the information of the solutions, we first investigate the lower semicontinuity of solution mappings for equilibrium problems, where the scalar solution set is a general set, but not a singleton. Second, we establish nonlinear scalarization theorems, thereby discuss the stability of vector/set-valued optimization and equilibrium problems by using results above. Third, we establish density theorem of efficient solutions to strong equilibrium problems. Based on the density results, we study the connectedness and semicontinuity of efficient solutions for strong equilibrium problems. Through the research of nonconvex theory, we explore new ways to study properties (eg.Holder/Aubin property) of approximate solutions for vector/set-valued equilibrium problems. Finally, we discuss convergence of the solution sets for perturbed vector/set-valued equilibrium problems with a sequence of mappings converging, and try to discuss the Hadamard-well-posedness for equilibrium problems. As applications, we will analyze the qualitative properties and quantitative properties of the flows for traffic network equilibrium and economic equilibrium problems. The study of these pr
英文关键词: Equilibrium problems;Characterizations for solution sets;Solution mappings;Stability;approximate solution