We study the Bayesian regret of the renowned Thompson Sampling algorithm in contextual bandits with binary losses and adversarially-selected contexts. We adapt the information-theoretic perspective of \cite{RvR16} to the contextual setting by considering a lifted version of the information ratio defined in terms of the unknown model parameter instead of the optimal action or optimal policy as done in previous works on the same setting. This allows us to bound the regret in terms of the entropy of the prior distribution through a remarkably simple proof, and with no structural assumptions on the likelihood or the prior. The extension to priors with infinite entropy only requires a Lipschitz assumption on the log-likelihood. An interesting special case is that of logistic bandits with $d$-dimensional parameters, $K$ actions, and Lipschitz logits, for which we provide a $\widetilde{O}(\sqrt{dKT})$ regret upper-bound that does not depend on the smallest slope of the sigmoid link function.
翻译:我们研究了著名的汤普森抽样算法在具有二进制损失和对抗性选择背景的背景强盗中产生的巴伊西亚人的遗憾。我们通过考虑以未知模型参数而不是与以前在同一环境中的工作一样的最佳行动或最佳政策来界定的信息比率的取消版本,将\ cite{RvR16} 的信息理论视角与背景环境相适应。这使我们能够通过一个非常简单的证明,将先前分布的微小的遗憾与先前分布的微小的假设捆绑在一起,而没有关于可能性或先前的结构性假设。 将无限昆虫的先行扩展仅需要对日志相似性的Lipschitz假设。一个有趣的特殊案例是具有美元维度参数的后勤强盗、 $K$ 动作和 Lipschitz logits, 我们为此提供了一个不取决于小行星连接功能最小斜度的 $\ ltipilde{O} (sqrt{dKT} $(sqrt{kt}</s>