Mobile edge computing (MEC) is a promising solution for enhancing the user experience, minimizing content delivery expenses, and reducing backhaul traffic. In this paper, we propose a novel privacy-preserving decentralized game-theoretic framework for resource crowdsourcing in MEC. Our framework models the interactions between a content provider (CP) and multiple mobile edge device users (MEDs) as a non-cooperative game, in which MEDs offer idle storage resources for content caching in exchange for rewards. We introduce efficient decentralized gradient play algorithms for Nash equilibrium (NE) computation by exchanging local information among neighboring MEDs only, thus preventing attackers from learning users' private information. The key challenge in designing such algorithms is that communication among MEDs is not fixed and is facilitated by a sequence of undirected time-varying graphs. Our approach achieves linear convergence to the NE without imposing any assumptions on the values of parameters in the local objective functions, such as requiring strong monotonicity to be stronger than its dependence on other MEDs' actions, which is commonly required in existing literature when the graph is directed time-varying. Extensive simulations demonstrate the effectiveness of our approach in achieving efficient resource outsourcing decisions while preserving the privacy of the edge devices.
翻译:暂无翻译