Nonnegative matrix factorization (NMF) is a popular method used to reduce dimensionality in data sets whose elements are nonnegative. It does so by decomposing the data set of interest, $\mathbf{X}$, into two lower rank nonnegative matrices multiplied together ($\mathbf{X} \approx \mathbf{WH}$). These two matrices can be described as the latent factors, represented in the rows of $\mathbf{H}$, and the scores of the observations on these factors that are found in the rows of $\mathbf{W}$. This paper provides an extension of this method which allows one to specify prior knowledge of the data, including both group information and possible underlying factors. This is done by further decomposing the matrix, $\mathbf{H}$, into matrices $\mathbf{A}$ and $\mathbf{S}$ multiplied together. These matrices represent an 'auxiliary' matrix and a semi-constrained factor matrix respectively. This method and its updating criterion are proposed, followed by its application on both simulated and real world examples.
翻译:非负矩阵因子化(NMF)是一种常用的方法,用于减少元素非负值数据集的维度。它通过将相关数据集($\mathbf{X}$)分解成两个较低级别的非负值矩阵($mathbf{X}\ approx\mathbf{WH}$),将这两个矩阵称为潜在因素,表现在$\mathbf{H}美元行和在$\mathbf{H}一行的关于这些因素的观测结果的分数。本文件提供了这种方法的延伸,使一个人能够具体说明先前对数据的知识,包括群体信息和可能的基本因素。这是通过进一步将矩阵、$\mathbf{A}美元和$\mathf{H}美元分解为潜在因素,表现在$\mathbf{A}美元行和$\phathf{S}美元中。这些矩阵是“auxilitro”矩阵和半contracrate 要素矩阵,分别遵循了这一世界模型和标准。