Nonnegative matrix factorization (NMF) is a popular method used to reduce dimensionality in data sets whose elements are nonnegative. It does so by decomposing the data set of interest, $\mathbf{X}$, into two lower rank nonnegative matrices multiplied together ($\mathbf{X} \approx \mathbf{WH}$). These two matrices can be described as the latent factors, represented in the rows of $\mathbf{H}$, and the scores of the observations on these factors that are found in the rows of $\mathbf{W}$. This paper provides an extension of this method which allows one to specify prior knowledge of the data, including both group information and possible underlying factors. This is done by further decomposing the matrix, $\mathbf{H}$, into matrices $\mathbf{A}$ and $\mathbf{S}$ multiplied together. These matrices represent an 'auxiliary' matrix and a semi-constrained factor matrix respectively. This method and its updating criterion are proposed, followed by its application on both simulated and real world examples.


翻译:非负矩阵因子化(NMF)是一种常用的方法,用于减少元素非负值数据集的维度。它通过将相关数据集($\mathbf{X}$)分解成两个较低级别的非负值矩阵($mathbf{X}\ approx\mathbf{WH}$),将这两个矩阵称为潜在因素,表现在$\mathbf{H}美元行和在$\mathbf{H}一行的关于这些因素的观测结果的分数。本文件提供了这种方法的延伸,使一个人能够具体说明先前对数据的知识,包括群体信息和可能的基本因素。这是通过进一步将矩阵、$\mathbf{A}美元和$\mathf{H}美元分解为潜在因素,表现在$\mathbf{A}美元行和$\phathf{S}美元中。这些矩阵是“auxilitro”矩阵和半contracrate 要素矩阵,分别遵循了这一世界模型和标准。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
8+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
9+阅读 · 2021年3月8日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
8+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员