We study the lower tail behavior of the least singular value of an $n\times n$ random matrix $M_n := M+N_n$, where $M$ is a fixed complex matrix with operator norm at most $\exp(n^{c})$ and $N_n$ is a random matrix, each of whose entries is an independent copy of a complex random variable with mean $0$ and variance $1$. Motivated by applications, our focus is on obtaining bounds which hold with extremely high probability, rather than on the least singular value of a typical such matrix. This setting has previously been considered in a series of influential works by Tao and Vu, most notably in connection with the strong circular law, and the smoothed analysis of the condition number, and our results improve upon theirs in two ways: (i) We are able to handle $\|M\| = O(\exp(n^{c}))$, whereas the results of Tao and Vu are applicable only for $M = O(\text{poly(n)})$. (ii) Even for $M = O(\text{poly(n)})$, we are able to extract more refined information -- for instance, our results show that for such $M$, the probability that $M_n$ is singular is $O(\exp(-n^{c}))$, whereas even in the case when $\xi$ is a Bernoulli random variable, the results of Tao and Vu only give a bound of the form $O_{C}(n^{-C})$ for any constant $C>0$. As opposed to all previous works obtaining such bounds with error rate better than $n^{-1}$, our proof makes no use either of the inverse Littlewood--Offord theorems, or of any sophisticated net constructions. Instead, we show how to reduce the problem from the (complex) sphere to (Gaussian) integer vectors, where it is solved directly by utilizing and extending a combinatorial approach to the singularity problem for random discrete matrices, recently developed by Ferber, Luh, Samotij, and the author.


翻译:我们研究的是最低单值的低尾细行为。我们受应用程序的驱动,我们的重点是获得一个极低的直径值(美元) 随机基质(美元) : = M+N_n 美元 : = M+N_n美元 : 美元是一个固定的复杂基质,操作者规范为$x(n ⁇ c) 美元, 美元美元是一个随机基质, 每个条目都是一个复杂随机变量的独立副本, 平均值为0美元, 差异值为1美元。 我们的焦点是获取一个极低的基质值, 而不是典型的基质 : =M+N_n 美元 : 这个设置以前在Tao 和 Vu 一系列有影响力的工程中被考虑过, 最显著的基值分析结果是: (i) 美元= 美元 = 美元 = 美元 美元 = 美元 美元, 而 美元的基质值显示的是 = O= m 美元 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
专知会员服务
119+阅读 · 2020年7月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月24日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
专知会员服务
119+阅读 · 2020年7月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员