Machine Learning (ML) has been embraced as a powerful tool by the financial industry, with notable applications spreading in various domains including investment management. In this work, we propose a full-cycle data-driven investment robo-advising framework, consisting of two ML agents. The first agent, an inverse portfolio optimization agent, infers an investor's risk preference and expected return directly from historical allocation data using online inverse optimization. The second agent, a deep reinforcement learning (RL) agent, aggregates the inferred sequence of expected returns to formulate a new multi-period mean-variance portfolio optimization problem that can be solved using deep RL approaches. The proposed investment pipeline is applied on real market data from April 1, 2016 to February 1, 2021 and has shown to consistently outperform the S&P 500 benchmark portfolio that represents the aggregate market optimal allocation. The outperformance may be attributed to the the multi-period planning (versus single-period planning) and the data-driven RL approach (versus classical estimation approach).
翻译:金融业将机器学习(ML)视为一个强大的工具,其显著应用分散在包括投资管理在内的各个领域。在这项工作中,我们提议了一个由两个ML代理商组成的全周期数据驱动投资抢劫咨询框架。第一个代理商,一个反面组合优化代理商,利用在线反面优化,推断投资者的风险偏好和预期直接从历史分配数据中得到回报。第二个代理商,一个深度强化学习(RL)代理商,汇总了预期收益的推导序列,以形成一个新的多期平均投资组合优化问题,可以通过深度RL方法加以解决。拟议的投资管道在2016年4月1日至2021年2月1日的实际市场数据中应用,并表明一贯超过代表市场总体最佳分配的S & P 500基准组合。 业绩超出预期可能归因于多期规划(反单期规划)和数据驱动RL方法(典型估算方法 ) 。