We introduce hp-greedy, a refinement approach for building gravitational wave surrogates as an extension of the standard reduced basis framework. Our proposal is data-driven, with a domain decomposition of the parameter space, local reduced basis, and a binary tree as the resulting structure, which are obtained in an automated way. When compared to the standard global reduced basis approach, the numerical simulations of our proposal show three salient features: i) representations of lower dimension with no loss of accuracy, ii) a significantly higher accuracy for a fixed maximum dimensionality of the basis, in some cases by orders of magnitude, and iii) results that depend on the reduced basis seed choice used by the refinement algorithm. We first illustrate the key parts of our approach with a toy model and then present a more realistic use case of gravitational waves emitted by the collision of two spinning, non-precessing black holes. We discuss performance aspects of hp-greedy, such as overfitting with respect to the depth of the tree structure, and other hyperparameter dependences. As two direct applications of the proposed hp-greedy refinement, we envision: i) a further acceleration of statistical inference, which might be complementary to focused reduced-order quadratures, and ii) the search of gravitational waves through clustering and nearest neighbors.
翻译:我们引入了hp-greedy, 用于建造引力波代谢器的精细方法, 作为标准降低基准框架的延伸。 我们的提案是由数据驱动的, 以参数空间、 本地降低基数和二树作为结果结构的域分解为主, 以自动方式获得。 与标准全球降低基数方法相比, 我们提案的数字模拟显示了三个显著特征 : (一) 尺寸较低, 准确度不降低; (二) 基础的固定最大维度的精确度要高得多, 在某些情况下, 以数量级为单位; (三) 取决于改进算法所使用的基础种子选择减少的结果。 我们首先用一个玩具模型来说明我们的方法的关键部分, 然后提出一个更现实的引力波使用案例, 由两个旋转的、 不膨胀的黑洞的碰撞所释放出来。 我们讨论hp- greedy的性能方面, 例如, 过度适应树结构的深度, 以及其他超度依赖度; (三) 作为拟议快速搜索的两种直接应用,, 以快速搜索为核心, 。