Quasar convexity is a condition that allows some first-order methods to efficiently minimize a function even when the optimization landscape is non-convex. Previous works develop near-optimal accelerated algorithms for minimizing this class of functions, however, they require a subroutine of binary search which results in multiple calls to gradient evaluations in each iteration, and consequently the total number of gradient evaluations does not match a known lower bound. In this work, we show that a recently proposed continuized Nesterov acceleration can be applied to minimizing quasar convex functions and achieves the optimal bound with a high probability. Furthermore, we find that the objective functions of training generalized linear models (GLMs) satisfy quasar convexity, which broadens the applicability of the relevant algorithms, while known practical examples of quasar convexity in non-convex learning are sparse in the literature. We also show that if a smooth and one-point strongly convex, Polyak-Lojasiewicz, or quadratic-growth function satisfies quasar convexity, then attaining an accelerated linear rate for minimizing the function is possible under certain conditions, while acceleration is not known in general for these classes of functions.
翻译:Quasar convexity 是一个条件, 允许某些一阶方法有效地将函数最小化, 即使优化地貌不是隐形的, 也允许某些先行方法将函数有效最小化。 先前的工程开发了近最佳加速算法, 以尽量减少这一类函数。 但是, 它们需要二进制搜索的子程序, 导致多次呼唤每迭代中的梯度评价, 因此梯度评价的总数与已知较低约束值不相符。 在这项工作中, 我们显示, 最近提出的内斯特罗夫同步加速可以应用到最大限度地减少象萨 convex 函数, 并实现最优化的组合。 此外, 我们发现, 培训通用线性模型( GLMS) 的客观功能满足了 Qisar convexity, 从而扩大了相关算法的可适用性, 而已知的非convex 学习的象萨共性实际例子在文献中很少见。 我们还表明, 如果一个顺和一点强烈的正弦、 Polyak- Lojasiewicz 、 或四进增成函数可以满足高概率的四进状态, 。 然后在某种加速状态下达到某种加速状态下达到某种加速状态, 而已知的直线性功能,, 则在某种加速的功能在特定的加速状态下, 。