We introduce the problem of adapting a stable matching to forced and forbidden pairs. Specifically, given a stable matching $M_1$, a set $Q$ of forced pairs, and a set $P$ of forbidden pairs, we want to find a stable matching that includes all pairs from $Q$, no pair from $P$, and that is as close as possible to $M_1$. We study this problem in four classical stable matching settings: Stable Roommates (with Ties) and Stable Marriage (with Ties). As our main contribution, we develop an algorithmic technique to "propagate" changes through a stable matching. This technique is at the core of our polynomial-time algorithm for adapting Stable Roommates matchings to forced pairs. In contrast to this, we show that the same problem for forbidden pairs is NP-hard. However, our propagation technique allows for a fixed-parameter tractable algorithm with respect to the number of forbidden pairs when both forced and forbidden pairs are present. Moreover, we establish strong intractability results when preferences contain ties.
翻译:我们引入了稳定匹配强制和禁止配对的问题。 具体地说, 在稳定匹配$1美元、 一套固定的强制配对美元和一套固定的禁止配对美元的情况下, 我们想要找到一种稳定的匹配, 包括从美元到美元的所有配对, 而不是从美元到美元, 并且尽可能接近1美元。 我们用四个典型的稳定匹配环境来研究这个问题: 稳定的室友( 带领) 和稳定的婚姻( 带领) 。 作为我们的主要贡献, 我们开发了一种算法技术, 通过稳定匹配来改变“ 配对 ” 。 这个技术是我们将稳定的室友配对与强制配对的多元- 时间算法的核心。 与此相反, 我们显示, 禁止配对的问题同样是硬的。 但是, 我们的传播技术允许在强制和禁止配对都存在的时候, 使用固定的 与禁配对数量 的可调控的算法 。 此外, 当偏重时, 我们确定了强烈的耐性结果 。