The conditional extremes framework allows for event-based stochastic modeling of dependent extremes, and has recently been extended to spatial and spatio-temporal settings. After standardizing the marginal distributions and applying an appropriate linear normalization, certain non-stationary Gaussian processes can be used as asymptotically-motivated models for the process conditioned on threshold exceedances at a fixed reference location and time. In this work, we adapt existing conditional extremes models to allow for the handling of large spatial datasets. This involves specifying the model for spatial observations at $d$ locations in terms of a latent $m\ll d$ dimensional Gaussian model, whose structure is specified by a Gaussian Markov random field. We perform Bayesian inference for such models for datasets containing thousands of observation locations using the integrated nested Laplace approximation, or INLA. We explain how constraints on the spatial and spatio-temporal Gaussian processes, arising from the conditioning mechanism, can be implemented through the latent variable approach without losing the computationally convenient Markov property. We discuss tools for the comparison of models via their posterior distributions, and illustrate the flexibility of the approach with gridded Red Sea surface temperature data at over $6,000$ observed locations. Posterior sampling is exploited to study the probability distribution of cluster functionals of spatial and spatio-temporal extreme episodes.


翻译:有条件的极端框架允许对依赖性极端进行基于事件的随机建模,并且最近已经扩展到空间和空间-时空环境。在对边际分布进行标准化和适用适当的线性正常化之后,某些非静止高斯进程可以用作固定参考地点和时间以临界超值为条件的流程的零星驱动模型。在这项工作中,我们调整现有的有条件极端模型,以便处理大型空间数据集。这包括以潜值$m\ll dd dispio-demode 高斯模型的方式指定美元地点的空间观测模型,其结构由高斯马可夫随机字段标定。我们用综合的拉比近定位或国家空间和空间时空时超值模型对包含数千个观察地点的数据集进行巴耶斯推论。我们解释了由于调节机制而导致的空间和空间-时空高值高值流程的制约如何通过潜在变量方法实施,而不会失去可计算方便的马尔科夫空间- 维度分布模型模型的结构。我们通过观察的海平面空间-海平面分布模型工具,通过观测的海面模型进行对比。

0
下载
关闭预览

相关内容

马尔可夫随机场(Markov Random Field),也有人翻译为马尔科夫随机场,马尔可夫随机场是建立在马尔可夫模型和贝叶斯理论基础之上的,它包含两层意思:一是什么是马尔可夫,二是什么是随机场。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员