Gene expression is a stochastic process in which cells produce biomolecules essential to the function of life. Modern experimental methods allow for the measurement of biomolecules at single-cell and single-molecule resolution over time. Mathematical models are used to make sense of these experiments. The codesign of experiments and models allows one to use models to design optimal experiments, and to find experiments which provide as much information as possible about relevant model parameters. Here, we provide a formulation of Fisher information for trajectories sampled from the continuous time Markov processes often used to model biological systems, and apply the result to potentially correlated measurements of stochastic gene expression. We validate the result on two commonly used models of gene expression and show it can be used to optimize measurement periods for simulated single-cell fluorescence microscopy experiments. Finally, we use a connection between Fisher information and mutual information to derive channel capacities of nonlinearly regulated gene expression.
翻译:基因表达法是一种随机过程, 细胞产生对生命功能至关重要的生物分子。 现代实验方法允许测量单细胞和单分子分辨率的生物分子。 数学模型用来理解这些实验。 实验和模型的代码符号允许人们使用模型来设计最佳实验, 并找到尽可能多地提供有关模型参数的信息的实验。 在这里, 我们为从经常用于模拟生物系统的连续时间Markov过程取样的轨迹提供了渔业者信息的配方, 并将结果应用到对随机基因表达方式的潜在相关测量中。 我们验证了两种常用基因表达模式的结果, 并表明它可用于优化模拟单细胞荧光显微镜实验的测量时间。 最后, 我们使用渔业信息和相互信息之间的联系来获取非线性调节基因表达的通道能力 。