The sampling theorem plays a fundamental role for the recovery of continuous-time signals from discrete-time samples in the field of signal processing. The sampling theorem of non-band-limited signals has evolved into one of the most challenging problems. In this work, a generalized sampling theorem -- which builds on the Koopman operator -- is proved for signals in generator-bounded space (Theorem 1). It naturally extends the Nyquist-Shannon sampling theorem that, 1) for band-limited signals, the lower bounds of sampling frequency given by these two theorems are exactly the same; 2) the Koopman operator-based sampling theorem can also provide finite bound of sampling frequency for certain types of non-band-limited signals, which can not be addressed by Nyquist-Shannon sampling theorem. These types of non-band-limited signals include but not limited to, for example, inverse Laplace transform with limited imaginary interval of integration, and linear combinations of complex exponential functions. Moreover, the Koopman operator-based reconstruction algorithm is provided with theoretical result of convergence. By this algorithm, the sampling theorem is effectively illustrated on several signals related to sine, exponential and polynomial signals.


翻译:在信号处理领域,非带宽信号的抽样理论也演变成最具挑战性的问题之一。在这项工作中,以Koopman操作者操作者操作者操作者为基础的一般抽样理论(以Koopman操作者操作者操作者操作者为基础)被证明是受发电机控制空间的信号(Theorem 1),它自然延伸Nyquist-Shannon取样理论,即1,对于带宽信号,这两个理论提供的取样频率的较低范围完全相同;2,Koopman操作者取样理论还可以为某些类型的非带宽信号提供一定的取样频率。在这项工作中,Nyquist-Shannon取样理论者操作者无法处理的这种一般性的采样理论理论,这些非带宽的信号包括但不限于,例如,在带宽的假设间距有限的情况下反拉比特变换,以及复杂的指数功能的线性组合。此外,Koopman操作者的重建算法以理论性结果提供了若干类非带宽的聚合信号。通过这种算法,这些样品有效地展示了同正弦信号。</s>

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
0+阅读 · 2023年4月23日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员