The Gaussian process state-space model (GPSSM) has garnered considerable attention over the past decade. However, the standard GP with a preliminary kernel, such as the squared exponential kernel or Mat\'{e}rn kernel, that is commonly used in GPSSM studies, limits the model's representation power and substantially restricts its applicability to complex scenarios. To address this issue, we propose a new class of probabilistic state-space models called TGPSSMs, which leverage a parametric normalizing flow to enrich the GP priors in the standard GPSSM, enabling greater flexibility and expressivity. Additionally, we present a scalable variational inference algorithm that offers a flexible and optimal structure for the variational distribution of latent states. The proposed algorithm is interpretable and computationally efficient due to the sparse GP representation and the bijective nature of normalizing flow. Moreover, we incorporate a constrained optimization framework into the algorithm to enhance the state-space representation capabilities and optimize the hyperparameters, leading to superior learning and inference performance. Experimental results on synthetic and real datasets corroborate that the proposed TGPSSM outperforms several state-of-the-art methods. The accompanying source code is available at \url{https://github.com/zhidilin/TGPSSM}.
翻译:过去的十年中,基于高斯过程的状态空间模型(GPSSM)备受关注。然而,常用的带有预定义核函数(如平方指数核函数或Mat\'{e}rn核函数)的标准GP在限制模型表达能力的同时,极大地限制了其应用于复杂场景的能力。为了解决这个问题,我们提出了一种新的概率状态空间模型类——TGPSSM,这种模型利用参数规范化流来丰富标准GPSSM中的GP先验分布,使其具有更大的灵活性和表现力。此外,我们提出了一种可扩展的变分推断算法,提供了一种灵活且最优的变分状态分布结构。由于稀疏GP表示和规范化流的双射性质,所提出的算法可解释且计算效率高。此外,我们将约束优化框架纳入算法中,以增强状态空间表示能力并优化超参数,从而实现更优异的学习和推断性能。对合成数据集和真实数据集的实验结果证实,所提出的TGPSSM优于其它多种最先进的方法。所附代码可在\url{https://github.com/zhidilin/TGPSSM} 上获得。