The Gaussian process state-space model (GPSSM) has garnered considerable attention over the past decade. However, the standard GP with a preliminary kernel, such as the squared exponential kernel or Mat\'{e}rn kernel, that is commonly used in GPSSM studies, limits the model's representation power and substantially restricts its applicability to complex scenarios. To address this issue, we propose a new class of probabilistic state-space models called TGPSSMs, which leverage a parametric normalizing flow to enrich the GP priors in the standard GPSSM, enabling greater flexibility and expressivity. Additionally, we present a scalable variational inference algorithm that offers a flexible and optimal structure for the variational distribution of latent states. The proposed algorithm is interpretable and computationally efficient due to the sparse GP representation and the bijective nature of normalizing flow. Moreover, we incorporate a constrained optimization framework into the algorithm to enhance the state-space representation capabilities and optimize the hyperparameters, leading to superior learning and inference performance. Experimental results on synthetic and real datasets corroborate that the proposed TGPSSM outperforms several state-of-the-art methods. The accompanying source code is available at \url{https://github.com/zhidilin/TGPSSM}.


翻译:过去的十年中,基于高斯过程的状态空间模型(GPSSM)备受关注。然而,常用的带有预定义核函数(如平方指数核函数或Mat\'{e}rn核函数)的标准GP在限制模型表达能力的同时,极大地限制了其应用于复杂场景的能力。为了解决这个问题,我们提出了一种新的概率状态空间模型类——TGPSSM,这种模型利用参数规范化流来丰富标准GPSSM中的GP先验分布,使其具有更大的灵活性和表现力。此外,我们提出了一种可扩展的变分推断算法,提供了一种灵活且最优的变分状态分布结构。由于稀疏GP表示和规范化流的双射性质,所提出的算法可解释且计算效率高。此外,我们将约束优化框架纳入算法中,以增强状态空间表示能力并优化超参数,从而实现更优异的学习和推断性能。对合成数据集和真实数据集的实验结果证实,所提出的TGPSSM优于其它多种最先进的方法。所附代码可在\url{https://github.com/zhidilin/TGPSSM} 上获得。

0
下载
关闭预览

相关内容

【华盛顿大学博士论文】因果模型的似然分析,190页pdf
专知会员服务
34+阅读 · 2022年11月14日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
50+阅读 · 2020年12月14日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
【华盛顿大学博士论文】因果模型的似然分析,190页pdf
专知会员服务
34+阅读 · 2022年11月14日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
50+阅读 · 2020年12月14日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员