We propose attention-based modeling of quantities at arbitrary spatial points conditioned on related measurements at different locations. Our approach adapts a transformer-encoder to process measurements and read-out positions together. Attention-based models exhibit excellent performance across domains, which makes them an interesting candidate for modeling data irregularly sampled in space. We introduce a novel encoding strategy that applies the same transformation to the measurements and read-out positions, after which they are combined with encoded measurement values instead of relying on two different mappings. Efficiently learning input-output mappings from irregularly-spaced data is a fundamental challenge in modeling physical phenomena. To evaluate the effectiveness of our model, we conduct experiments on diverse problem domains, including high-altitude wind nowcasting, two-days weather forecasting, fluid dynamics, and heat diffusion. Our attention-based model consistently outperforms state-of-the-art models, such as Graph Element Networks and Conditional Neural Processes, for modeling irregularly sampled data. Notably, our model reduces root mean square error (RMSE) for wind nowcasting, improving from 9.24 to 7.98 and for a heat diffusion task from .126 to .084. We hypothesize that this superior performance can be attributed to the enhanced flexibility of our latent representation and the improved data encoding technique. To support our hypothesis, we design a synthetic experiment that reveals excessive bottlenecking in the latent representations of alternative models, which hinders information utilization and impedes training.
翻译:暂无翻译