An extremity is a vertex such that the removal of its closed neighbourhood does not increase the number of connected components. Let $Ext_{\alpha}$ be the class of all connected graphs whose quotient graph obtained from modular decomposition contains no more than $\alpha$ pairwise nonadjacent extremities. Our main contributions are as follows. First, we prove that the diameter of every $m$-edge graph in $Ext_{\alpha}$ can be computed in deterministic ${\cal O}(\alpha^3 m^{3/2})$ time. We then improve the runtime to linear for all graphs with bounded clique-number. Furthermore, we can compute an additive $+1$-approximation of all vertex eccentricities in deterministic ${\cal O}(\alpha^2 m)$ time. This is in sharp contrast with general $m$-edge graphs for which, under the Strong Exponential Time Hypothesis (SETH), one cannot compute the diameter in ${\cal O}(m^{2-\epsilon})$ time for any $\epsilon > 0$. As important special cases of our main result, we derive an ${\cal O}(m^{3/2})$-time algorithm for exact diameter computation within dominating pair graphs of diameter at least six, and an ${\cal O}(k^3m^{3/2})$-time algorithm for this problem on graphs of asteroidal number at most $k$. We end up presenting an improved algorithm for chordal graphs of bounded asteroidal number, and a partial extension of our results to the larger class of all graphs with a dominating target of bounded cardinality. Our time upper bounds in the paper are shown to be essentially optimal under plausible complexity assumptions.


翻译:外部偏差是一个顶点, 它的封闭区区块的移除不会增加连接组件的数量。 让 Ext<unk> alpha} 美元成为从模块分解中获得的所有连接图的类别, 以模块分解获得的平方图不超过$\ alpha$ 。 我们的主要贡献如下。 首先, 我们证明$Ext<unk> alpha} 中每张以美元为顶端的图形的直径可以用确定性$$( cal O) (\alpha3 m<unk> 3 /2} 美元) 来计算。 然后我们将所有通过模块分解获得的平方图的运行时间改进为线性。 此外, 我们可以在确定性美元 O}( alpha) (a) (alpha) (alpha) 顶端平面图形的直径性 $( leg) 。 在直径径直的直值中, 我们的平面直径直径直径直径直值在 美元 =% (Setimal) 直径直径直径直径直径直的O} 直径直径直径直径直径直径直的O= 直值显示。</s>

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
129+阅读 · 2023年1月29日
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
51+阅读 · 2020年12月14日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2022年4月30日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员