Many existing neural architecture search (NAS) solutions rely on downstream training for architecture evaluation, which takes enormous computations. Considering that these computations bring a large carbon footprint, this paper aims to explore a green (namely environmental-friendly) NAS solution that evaluates architectures without training. Intuitively, gradients, induced by the architecture itself, directly decide the convergence and generalization results. It motivates us to propose the gradient kernel hypothesis: Gradients can be used as a coarse-grained proxy of downstream training to evaluate random-initialized networks. To support the hypothesis, we conduct a theoretical analysis and find a practical gradient kernel that has good correlations with training loss and validation performance. According to this hypothesis, we propose a new kernel based architecture search approach KNAS. Experiments show that KNAS achieves competitive results with orders of magnitude faster than "train-then-test" paradigms on image classification tasks. Furthermore, the extremely low search cost enables its wide applications. The searched network also outperforms strong baseline RoBERTA-large on two text classification tasks. Codes are available at \url{https://github.com/Jingjing-NLP/KNAS} .


翻译:许多现有的神经结构搜索(NAS)解决方案依赖于建筑评估的下游培训,这需要大量计算。考虑到这些计算带来了巨大的碳足迹,本文旨在探索一种绿色(即环境友好型)NAS解决方案,该解决方案不经培训评估建筑。直观地说,由建筑本身引发的梯度,直接决定聚合和概括结果。它激励我们提出梯度内核假设:梯度可用作下游培训的粗略的替代物,用于评估随机初始化网络。为了支持这一假设,我们进行了理论分析,并找到了一个实用的梯度内核,与培训损失和验证业绩有着良好的关联。根据这一假设,我们提出了一个新的基于内核的建筑搜索方法KNAS。实验表明KNAS在图像分类任务上取得了比“Train-th-test”范式更快的竞争性结果。此外,搜索成本极低,使得其应用范围很广。搜索网络还超越了在两个文本分类任务上扩大的强基线 RoBERTA/NGNA。代码可在 K/UBS/RUGNS/Qrmusing.

1
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
Top
微信扫码咨询专知VIP会员