We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm. Here, given access to a matrix $A$ through matrix-vector products, an accuracy parameter $\epsilon$, and a target rank $k$, the goal is to find a rank-$k$ matrix $Z$ with orthonormal columns such that $\| A(I -ZZ^\top)\|_{S_p} \leq (1+\epsilon)\min_{U^\top U = I_k} \|A(I - U U^\top)\|_{S_p}$, where $\|M\|_{S_p}$ denotes the $\ell_p$ norm of the the singular values of $M$. For the special cases of $p=2$ (Frobenius norm) and $p = \infty$ (Spectral norm), Musco and Musco (NeurIPS 2015) obtained an algorithm based on Krylov methods that uses $\tilde{O}(k/\sqrt{\epsilon})$ matrix-vector products, improving on the na\"ive $\tilde{O}(k/\epsilon)$ dependence obtainable by the power method, where $\tilde{O}$ suppresses poly$(\log(dk/\epsilon))$ factors. Our main result is an algorithm that uses only $\tilde{O}(kp^{1/6}/\epsilon^{1/3})$ matrix-vector products, and works for all $p \geq 1$. For $p = 2$ our bound improves the previous $\tilde{O}(k/\epsilon^{1/2})$ bound to $\tilde{O}(k/\epsilon^{1/3})$. Since the Schatten-$p$ and Schatten-$\infty$ norms are the same up to a $1+ \epsilon$ factor when $p \geq (\log d)/\epsilon$, our bound recovers the result of Musco and Musco for $p = \infty$. Further, we prove a matrix-vector query lower bound of $\Omega(1/\epsilon^{1/3})$ for any fixed constant $p \geq 1$, showing that surprisingly $\tilde{\Theta}(1/\epsilon^{1/3})$ is the optimal complexity for constant~$k$. To obtain our results, we introduce several new techniques, including optimizing over multiple Krylov subspaces simultaneously, and pinching inequalities for partitioned operators. Our lower bound for $p \in [1,2]$ uses the Araki-Lieb-Thirring trace inequality, whereas for $p>2$, we appeal to a norm-compression inequality for aligned partitioned operators.


翻译:我们研究基于 Krylov 亚空基的迭代方法, 在任何标准下, 以 Krylov 亚空基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基基底基基底基基基基基底基基基底基基基基基基基基基底基底基底基底基底基底基底基基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基基底基基基基基基底基底基底基底基底基底基底基底基底基底基底基底基底基基基基基基基底基基基基基基底基基基基基基基基基基基基基基基基基基基基基基基基基基基基底基底基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基基底基基基基基基

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年6月16日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
0+阅读 · 2022年6月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员