In the optimization of dynamic systems, the variables typically have constraints. Such problems can be modeled as a Constrained Markov Decision Process (CMDP). This paper considers the peak Constrained Markov Decision Process (PCMDP), where the agent chooses the policy to maximize total reward in the finite horizon as well as satisfy constraints at each epoch with probability 1. We propose a model-free algorithm that converts PCMDP problem to an unconstrained problem and a Q-learning based approach is applied. We define the concept of probably approximately correct (PAC) to the proposed PCMDP problem. The proposed algorithm is proved to achieve an $(\epsilon,p)$-PAC policy when the episode $K\geq\Omega(\frac{I^2H^6SA\ell}{\epsilon^2})$, where $S$ and $A$ are the number of states and actions, respectively. $H$ is the number of epochs per episode. $I$ is the number of constraint functions, and $\ell=\log(\frac{SAT}{p})$. We note that this is the first result on PAC kind of analysis for PCMDP with peak constraints, where the transition dynamics are not known apriori. We demonstrate the proposed algorithm on an energy harvesting problem and a single machine scheduling problem, where it performs close to the theoretical upper bound of the studied optimization problem.


翻译:在优化动态系统时,变量通常会受到制约。这类问题可以模拟成一个控制马可夫决策过程(CMDP)的模型。本文件考虑了顶峰的马可夫决策过程(PCMDP ) 。在顶峰的马可夫决策过程(PCMDP ) 中,代理商选择了政策,以便在有限的地平线上最大限度地获得全部报酬,并满足每个时代的制约因素(概率 ) 1. 我们提出一个无模式的算法,将PCMDP问题转换成一个不受控制的问题,并采用基于Q学习的方法。我们定义了可能大致正确(PAC)于拟议的PCMDP问题的概念。 拟议的算法被证明能够实现美元(\ epsilon, p) $-PAC 的顶峰值政策, 当“K\geq\\\ Omega”(\ g) 以及“I2H6SA\ ell = Excalticloral” 时, 我们注意到,“PLQLO” 和“SLIA”的顶级成本分析结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月29日
Arxiv
0+阅读 · 2022年7月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员