This paper studies the problem of model training under Federated Learning when clients exhibit cluster structure. We contextualize this problem in mixed regression, where each client has limited local data generated from one of $k$ unknown regression models. We design an algorithm that achieves global convergence from any initialization, and works even when local data volume is highly unbalanced -- there could exist clients that contain $O(1)$ data points only. Our algorithm first runs moment descent on a few anchor clients (each with $\tilde{\Omega}(k)$ data points) to obtain coarse model estimates. Then each client alternately estimates its cluster labels and refines the model estimates based on FedAvg or FedProx. A key innovation in our analysis is a uniform estimate on the clustering errors, which we prove by bounding the VC dimension of general polynomial concept classes based on the theory of algebraic geometry.
翻译:本文在Federal Learning下研究当客户展示集群结构时在Federal Learning下进行模型培训的问题。 我们在混合回归中考虑到这一问题, 每一个客户都从一个未知的美元回归模型中获取有限的本地数据。 我们设计了一种算法,从任何初始化中实现全球趋同, 即使在本地数据量高度不平衡的情况下, 也行得通 -- 可能存在只包含O(1)美元数据点的客户。 我们的算法首先在几个锁定客户( 每个客户用$\tilde\Omega}(k)$) 的数据点)上进行瞬间下降, 以获得粗化的模型估计。 然后每个客户轮流估算其集群标签, 并完善基于 FedAvg 或 FedProx 的模型估计。 我们分析中的一项关键创新是对集群错误进行统一估计, 我们通过根据测算理论将一般多数值概念类的 VC 维C 维度范围加以验证。