Performing low-rank matrix completion with sensitive user data calls for privacy-preserving approaches. In this work, we propose a novel noise addition mechanism for preserving differential privacy where the noise distribution is inspired by Huber loss, a well-known loss function in robust statistics. The proposed Huber mechanism is evaluated against existing differential privacy mechanisms while solving the matrix completion problem using the Alternating Least Squares approach. We also propose using the Iteratively Re-Weighted Least Squares algorithm to complete low-rank matrices and study the performance of different noise mechanisms in both synthetic and real datasets. We prove that the proposed mechanism achieves {\epsilon}-differential privacy similar to the Laplace mechanism. Furthermore, empirical results indicate that the Huber mechanism outperforms Laplacian and Gaussian in some cases and is comparable, otherwise.


翻译:以敏感用户数据完成低级别矩阵要求采取保护隐私的方法。 在这项工作中,我们提议建立一个新的噪音添加机制,以在噪音分布受Huber丢失的启发下维护不同隐私,这是可靠统计数据中众所周知的一种损失功能。拟议的Huber机制根据现有的差异隐私机制进行评估,同时采用交替的最小广场方法解决矩阵完成问题。我们还提议使用“循环重整最小广场算法”,完成低级别矩阵,并研究合成和真实数据集中不同噪音机制的性能。我们证明拟议的机制实现了与Laplace机制相似的yepslon}差异隐私。此外,实证结果表明,Huber机制在某些情况下优于Laplacian和Gaussian,在其他情况下是可比的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月3日
Arxiv
0+阅读 · 2022年8月3日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员