In this paper, we propose approximate Frank-Wolfe (FW) algorithms to solve convex optimization problems over graph-structured support sets where the \textit{linear minimization oracle} (LMO) cannot be efficiently obtained in general. We first demonstrate that two popular approximation assumptions (\textit{additive} and \textit{multiplicative gap errors)}, are not valid for our problem, in that no cheap gap-approximate LMO oracle exists in general. Instead, a new \textit{approximate dual maximization oracle} (DMO) is proposed, which approximates the inner product rather than the gap. When the objective is $L$-smooth, we prove that the standard FW method using a $\delta$-approximate DMO converges as $\mathcal{O}(L / \delta t + (1-\delta)(\delta^{-1} + \delta^{-2}))$ in general, and as $\mathcal{O}(L/(\delta^2(t+2)))$ over a $\delta$-relaxation of the constraint set. Additionally, when the objective is $\mu$-strongly convex and the solution is unique, a variant of FW converges to $\mathcal{O}(L^2\log(t)/(\mu \delta^6 t^2))$ with the same per-iteration complexity. Our empirical results suggest that even these improved bounds are pessimistic, with significant improvement in recovering real-world images with graph-structured sparsity.
翻译:在本文中, 我们建议大约使用 Frank- Wolfe (FW) 算法来解决图形结构化支持设置上的 convex 优化问题。 我们首先证明两种流行近似假设(\ textit{ adtive} 和\ textit{ 多重差错 ) 对我们的问题无效, 因为在一般情况下不存在任何廉价的距离接近 LMO 的 LMO 。 相反, 提出了一个新的( textit{ 近似 双向最大化 ) (DMO), 它接近内部产品而不是差距。 当目标为 $- smooot 时, 我们首先证明使用 $\ delit{aditive} 和\ extradiplical{O} (L/ delta t + 1- dedelta} + (\ delta) + cluslentrial2} 。 通常情况下, 美元=xal_ a- mal=xal$( del\\\\\\) lexal) imal a.