Few-Shot Learning (FSL) has attracted growing attention in computer vision due to its capability in model training without the need for excessive data. FSL is challenging because the training and testing categories (the base vs. novel sets) can be largely diversified. Conventional transfer-based solutions that aim to transfer knowledge learned from large labeled training sets to target testing sets are limited, as critical adverse impacts of the shift in task distribution are not adequately addressed. In this paper, we extend the solution of transfer-based methods by incorporating the concept of metric-learning and channel attention. To better exploit the feature representations extracted by the feature backbone, we propose Class-Specific Channel Attention (CSCA) module, which learns to highlight the discriminative channels in each class by assigning each class one CSCA weight vector. Unlike general attention modules designed to learn global-class features, the CSCA module aims to learn local and class-specific features with very effective computation. We evaluated the performance of the CSCA module on standard benchmarks including miniImagenet, Tiered-ImageNet, CIFAR-FS, and CUB-200-2011. Experiments are performed in inductive and in/cross-domain settings. We achieve new state-of-the-art results.


翻译:由于在模型培训方面的能力而不需要过多的数据,很少的热学(FSL)在计算机视野方面引起了越来越多的关注。FSL具有挑战性,因为培训和测试类别(基础相对于新版本组)可以大体多样化。常规转让解决方案旨在将从大标签培训组获得的知识转让到目标测试组是有限的,因为任务分配变化的重大不利影响没有得到充分解决。在本文件中,我们通过纳入标准化学习和频道关注的概念,扩展基于转让方法的解决方案。为了更好地利用功能主干柱所提取的特征显示,我们提议了 " 特殊频道注意 " 模块,该模块通过为每类指定一个CSCA重量矢量矢量来学习歧视渠道。与旨在学习全球级特征的一般关注模块不同,CSCA模块旨在学习非常有效的本地和班级特点。我们评估了CSCA模块在标准基准(包括微型IMagenet、铁链-ImageNet、CIFA-FS和CUB-200-2011)方面的绩效。我们评估了CUB-CAR-CAR-CAR-CAR-CAR-CAR-CUB-B-CORD-C-SD)的绩效,这是在州/CMIND-CAD-CAD-CFOR-CAD-CAD-CS-CAD-CAD-CAD-CAD-CAD-CFD-CFD-CSDFAD-CFS-S-CFS-CFD-CS-CS-CFDFDFSD-CFS-S-CFD-S-S-S-S-S-S-CFD-S-S-CFS-S-S-S-S-CFS-S-S-S-C-S-S-S-SD-SD-S-S-CFS-CFSD-CFSDFS-CFD-S-CFS-S-S-CFS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-CFS-S-S-S-S-S-S-S-S-S-C

0
下载
关闭预览

相关内容

机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
82+阅读 · 2022年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
12+阅读 · 2022年4月12日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员