Lidar-based simultaneous localization and mapping (SLAM) approaches have obtained considerable success in autonomous robotic systems. This is in part owing to the high-accuracy of robust SLAM algorithms and the emergence of new and lower-cost lidar products. This study benchmarks current state-of-the-art lidar SLAM algorithms with a multi-modal lidar sensor setup showcasing diverse scanning modalities (spinning and solid-state) and sensing technologies, and lidar cameras, mounted on a mobile sensing and computing platform. We extend our previous multi-modal multi-lidar dataset with additional sequences and new sources of ground truth data. Specifically, we propose a new multi-modal multi-lidar SLAM-assisted and ICP-based sensor fusion method for generating ground truth maps. With these maps, we then match real-time pointcloud data using a natural distribution transform (NDT) method to obtain the ground truth with full 6 DOF pose estimation. This novel ground truth data leverages high-resolution spinning and solid-state lidars. We also include new open road sequences with GNSS-RTK data and additional indoor sequences with motion capture (MOCAP) ground truth, complementing the previous forest sequences with MOCAP data. We perform an analysis of the positioning accuracy achieved with ten different SLAM algorithm and lidar combinations. We also report the resource utilization in four different computational platforms and a total of five settings (Intel and Jetson ARM CPUs). Our experimental results show that current state-of-the-art lidar SLAM algorithms perform very differently for different types of sensors. More results, code, and the dataset can be found at: \href{https://github.com/TIERS/tiers-lidars-dataset-enhanced}{github.com/TIERS/tiers-lidars-dataset-enhanced.
翻译:在自主机器人系统中,基于利达尔的同步本地化和绘图(SLAM)方法取得了相当大的成功,这部分是由于强有力的SLAM算法的高度精准性以及新的和成本较低的利达尔产品的出现。本研究基准是当前最先进的利达尔SLAM算法,并采用多式利达尔传感器设置,展示各种扫描模式(缝纫和固态)和遥感技术,以及安装在移动感测和计算平台上的利达尔照相机。我们扩展了我们以前的多式多式多lid数据集,增加了新的地面真相数据序列和新的来源。具体地说,我们提出了一个新的多式多式多式多式多式、SLAM辅助和基于国际化的传感器拼凑方法,用于绘制地面真相地图。然后,我们将实时点球数据库数据与完全的6DERF组合数据进行匹配。我们新的地面数据数据数据利用了高分辨率的旋转和固态岩浆数据库。我们还在GNSU-RTKM-RODA的新的道路序列序列序列中,我们用以前的数据和新式的轨道数据序列序列数据采集数据采集了我们之前的四级数据。