This paper presents an accurate, highly efficient, and learning-free method for large-scale odometry estimation using spinning radar, empirically found to generalize well across very diverse environments -- outdoors, from urban to woodland, and indoors in warehouses and mines - without changing parameters. Our method integrates motion compensation within a sweep with one-to-many scan registration that minimizes distances between nearby oriented surface points and mitigates outliers with a robust loss function. Extending our previous approach CFEAR, we present an in-depth investigation on a wider range of data sets, quantifying the importance of filtering, resolution, registration cost and loss functions, keyframe history, and motion compensation. We present a new solving strategy and configuration that overcomes previous issues with sparsity and bias, and improves our state-of-the-art by 38%, thus, surprisingly, outperforming radar SLAM and approaching lidar SLAM. The most accurate configuration achieves 1.09% error at 5Hz on the Oxford benchmark, and the fastest achieves 1.79% error at 160Hz.
翻译:本文介绍了一种精确、高效和无学习方法,用于使用旋转雷达进行大规模odard 估计的大规模odard 方法,从经验中发现,该方法在不改变参数的情况下,在从城市到林地的户外环境、仓库和矿山的室内环境 -- -- 从户外环境到林地,以及仓库和矿山的室内环境 -- -- 广泛推广。我们的方法将运动补偿与一到多次扫描的扫描结合起来,这种扫描可以最大限度地减少附近面向表面的点之间的距离,并用强大的损失功能减少外部离线。我们采用了以前的方法CFEAR, 扩展了我们以前的方法,即CFEAR, 对更广泛的数据集进行了深入的调查,对过滤、解析、登记成本和损失功能、关键框架历史和运动补偿的重要性进行了量化。我们提出了一个新的解决方案和配置,克服了过去的问题和偏差,并将我们最先进的标准提高了38%,因此令人惊讶的是,雷达SLAMM和接近LDAR SLM。最精确的配置在牛津基准5Hz实现了1.09%的错误,而最快的在160Hz实现了1.79%的错误。