Discontinuous Galerkin (DG) schemes on unstructured meshes offer the advantages of compactness and the ability to handle complex computational domains. However, their robustness and reliability in solving hyperbolic conservation laws depend on two critical abilities: suppressing spurious oscillations and preserving intrinsic bounds or constraints. This paper introduces two significant advancements in enhancing the robustness and efficiency of DG methods on unstructured meshes for general hyperbolic conservation laws, while maintaining their accuracy and compactness. First, we investigate the oscillation-eliminating (OE) DG methods on unstructured meshes. These methods not only maintain key features such as conservation, scale invariance, and evolution invariance but also achieve rotation invariance through a novel rotation-invariant OE (RIOE) procedure. Second, we propose, for the first time, the optimal convex decomposition for designing efficient bound-preserving (BP) DG schemes on unstructured meshes. Finding the optimal convex decomposition that maximizes the BP CFL number is an important yet challenging problem.While this challenge was addressed for rectangular meshes, it remains an open problem for triangular meshes. This paper successfully constructs the optimal convex decomposition for the widely used $P^1$ and $P^2$ spaces on triangular cells, significantly improving the efficiency of BP DG methods.The maximum BP CFL numbers are increased by 100%--200% for $P^1$ and 280.38%--350% for $P^2$, compared to classic decomposition. Furthermore, our RIOE procedure and optimal decomposition technique can be integrated into existing DG codes with little and localized modifications. These techniques require only edge-neighboring cell information, thereby retaining the compactness and high parallel efficiency of original DG methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员