Many internet platforms that collect behavioral big data use it to predict user behavior for internal purposes and for their business customers (e.g., advertisers, insurers, security forces, governments, political consulting firms) who utilize the predictions for personalization, targeting, and other decision-making. Improving predictive accuracy is therefore extremely valuable. Data science researchers design algorithms, models, and approaches to improve prediction. Prediction is also improved with larger and richer data. Beyond improving algorithms and data, platforms can stealthily achieve better prediction accuracy by pushing users' behaviors towards their predicted values, using behavior modification techniques, thereby demonstrating more certain predictions. Such apparent "improved" prediction can result from employing reinforcement learning algorithms that combine prediction and behavior modification. This strategy is absent from the machine learning and statistics literature. Investigating its properties requires integrating causal with predictive notation. To this end, we incorporate Pearl's causal do(.) operator into the predictive vocabulary. We then decompose the expected prediction error given behavior modification, and identify the components impacting predictive power. Our derivation elucidates implications of such behavior modification to data scientists, platforms, their customers, and the humans whose behavior is manipulated. Behavior modification can make users' behavior more predictable and even more homogeneous; yet this apparent predictability might not generalize when business customers use predictions in practice. Outcomes pushed towards their predictions can be at odds with customers' intentions, and harmful to manipulated users.
翻译:许多收集行为大数据的互联网平台利用这些数据来预测内部用户行为,以及利用预测进行个人化、目标化和其他决策的客户(如广告商、保险商、安保力量、政府、政治咨询公司)使用这些预测来预测用户行为,从而预测内部和为其商业客户(如广告商、保险商、安保人员、政府、政治咨询公司)预测用户的行为。因此,提高预测准确性是非常宝贵的。数据科学研究者设计了算法、模型和办法来改进预测。预测性也得到了改进。除了改进算法和数据外,预测性也得到了改进。除了改进算法和数据外,平台还可以通过将用户的行为改变推向预测值,从而悄悄地实现更好的预测准确性。这些明显的“改进”预测性预测性可以来自于使用强化学习算法,将预测和行为修改结合起来。这种战略在机器学习和统计文献中是不存在的。调查其属性需要将因果关系与预测性结合起来。为此,我们将珍珠的因果(......)操作者纳入预测性词汇中。我们随后可以将预期的预测性错误与行为变,并查明影响预测力的成分。我们的推断性能影响。我们的预测性解释,在数据科学家、平台、客户的预测性行为改变行为改变过程中,而不能使客户产生更精确性的行为更精确性的行为变化的影响。