A structural graph summary is a small graph representation that preserves structural information necessary for a given task. The summary is used instead of the original graph to complete the task faster. We introduce multi-view structural graph summaries and propose an algorithm for merging two summaries. We conduct a theoretical analysis of our algorithm. We run experiments on three datasets, contributing two new ones. The datasets are of different domains (web graph, source code, and news) and sizes; the interpretation of multi-view depends on the domain and are pay-level domains on the web, control vs.\@ data flow of the code, and news broadcasters. We experiment with three graph summary models: attribute collection, class collection, and their combination. We observe that merging two structural summaries has an upper bound of quadratic complexity; but under reasonable assumptions, it has linear-time worst-case complexity. The running time of merging has a strong linear correlation with the number of edges in the two summaries. Therefore, the experiments support the assumption that the upper bound of quadratic complexity is not tight and that linear complexity is possible. Furthermore, our experiments show that always merging the two smallest summaries by the number of edges is the most efficient strategy for merging multiple structural summaries.
翻译:暂无翻译