Model rocketry presents a design task accessible to undergraduates while remaining an interesting challenge. Allowing for variation in fins, nose cones, and body tubes presents a rich design space containing numerous ways to achieve various altitudes. Therefore, when exploring possible designs computationally, it makes sense to apply a method that produces various possibilities for decision-makers to choose from: Quality Diversity (QD). The QD methods MAP-Elites, CMA-ME, and CMA-MAE are applied to model rocket design using the open-source OpenRocket software to characterize the behavior and determine the fitness of evolved designs. Selected rockets were manufactured and launched to evaluate them in the real world. Simulation results demonstrate that CMA-ME produces the widest variety of rocket designs, which is surprising given that CMA-MAE is a more recent method designed to overcome shortcomings with CMA-ME. Real-world testing demonstrates that a wide range of standard and unconventional designs are viable, though issues with the jump from simulation to reality cause some rockets to perform unexpectedly. This paper provides a case study on applying QD to a task accessible to a broader audience than industrial engineering tasks and uncovers unexpected results about the relative performance of different QD algorithms.
翻译:暂无翻译