Partial differential equation (PDE) solvers are extensively utilized across numerous scientific and engineering fields. However, achieving high performance and scalability often necessitates intricate and low-level programming, particularly when leveraging deterministic sparsity patterns in structured grids. In this paper, we propose an innovative domain-specific language (DSL), Mat2Stencil, with its compiler, for PDE solvers on structured grids. Mat2Stencil introduces a structured sparse matrix abstraction, facilitating modular, flexible, and easy-to-use expression of solvers across a broad spectrum, encompassing components such as Jacobi or Gauss-Seidel preconditioners, incomplete LU or Cholesky decompositions, and multigrid methods built upon them. Our DSL compiler subsequently generates matrix-free code consisting of generalized stencils through multi-stage programming. The code allows spatial loop-carried dependence in the form of quasi-affine loops, in addition to the Jacobi-style stencil's embarrassingly parallel on spatial dimensions. We further propose a novel automatic parallelization technique for the spatially dependent loops, which offers a compile-time deterministic task partitioning for threading, calculates necessary inter-thread synchronization automatically, and generates an efficient multi-threaded implementation with fine-grained synchronization. Implementing 4 benchmarking programs, 3 of them being the pseudo-applications in NAS Parallel Benchmarks with $6.3\%$ lines of code and 1 being matrix-free High Performance Conjugate Gradients with $16.4\%$ lines of code, we achieve up to $1.67\times$ and on average $1.03\times$ performance compared to manual implementations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员