The increasing proliferation of misinformation and its alarming impact have motivated both industry and academia to develop approaches for misinformation detection and fact checking. Recent advances on large language models (LLMs) have shown remarkable performance in various tasks, but whether and how LLMs could help with misinformation detection remains relatively underexplored. Most of existing state-of-the-art approaches either do not consider evidence and solely focus on claim related features or assume the evidence to be provided. Few approaches consider evidence retrieval as part of the misinformation detection but rely on fine-tuning models. In this paper, we investigate the potential of LLMs for misinformation detection in a zero-shot setting. We incorporate an evidence retrieval component into the process as it is crucial to gather pertinent information from various sources to detect the veracity of claims. To this end, we propose a novel re-ranking approach for multimodal evidence retrieval using both LLMs and large vision-language models (LVLM). The retrieved evidence samples (images and texts) serve as the input for an LVLM-based approach for multimodal fact verification (LVLM4FV). To enable a fair evaluation, we address the issue of incomplete ground truth for evidence samples in an existing evidence retrieval dataset by annotating a more complete set of evidence samples for both image and text retrieval. Our experimental results on two datasets demonstrate the superiority of the proposed approach in both evidence retrieval and fact verification tasks and also better generalization capability across dataset compared to the supervised baseline.
翻译:暂无翻译