We propose, analyze, and investigate numerically a novel two-level Galerkin reduced order model (2L-ROM) for the efficient and accurate numerical simulation of the steady Navier-Stokes equations. In the first step of the 2L-ROM, a relatively low-dimensional nonlinear system is solved. In the second step, the Navier-Stokes equations are linearized around the solution found in the first step, and a higher-dimensional system for the linearized problem is solved. We prove an error bound for the new 2L-ROM and compare it to the standard one level ROM (1L-ROM) in the numerical simulation of the steady Burgers equation. The 2L-ROM significantly decreases (by a factor of $2$ and even $3$) the 1L-ROM computational cost, without compromising its numerical accuracy.
翻译:我们提议、分析和从数字上调查一个新的两个层次的Galerkin减序模型(2L-ROM),用于对稳定的Navier-Stokes方程式进行高效和准确的数字模拟。在2L-ROM的第一阶段,解决了一个相对低维的非线性系统。在第二步,Navier-Stokes方程式围绕第一步中找到的解决方案线性化,解决了线性化问题的更高维度系统。我们证明新的2L-ROM是注定的错误,并将其与稳定的Burgers方程式的数字模拟中的标准一个水平的ROM(1L-ROM)进行比较。2L-ROM在不降低其数字准确性的情况下,显著降低了1L-ROM计算成本(以2美元计,甚至3美元计)。