We study the structure-preserving discretizations of a hybrid model with kinetic ions and mass-less electrons. Different from most existing works in the literature, we conduct the discretizations based on two equivalent formulations with vector potentials in different gauges, and the distribution functions depend on canonical momentum (not velocity). Particle-in-cell methods are used for the distribution functions, and vector potentials are discretized by finite element methods in the framework of finite element exterior calculus. Splitting methods are used for time discretizations. For the first formulation, filters are used to reduce the noises from particles and are shown to improve the numerical results significantly. The schemes of the second formulation show good stability and accuracy because of the use of symplectic methods for canonical Hamiltonian systems. Magnetic fields obtained from the vector potentials are divergence-free naturally. Some numerical experiments are conducted to validate and compare the two discretizations.
翻译:我们研究了含有动离子和无质量电子的混合模型的结构保存离散性。与文献中大多数现有作品不同,我们根据两种等同的配方进行离散性工作,这些配方具有不同量表的矢量潜力,分布功能取决于罐体动力(而不是速度);对分布功能采用了粒子细胞方法,在有限元素外微积分的框架内,矢量潜力通过有限元素的元素方法分离;对时间离散使用了分解方法。对于第一种配方,过滤器用于减少粒子的噪音,并显示其显著地改进数字结果。第二种配方的配方方案显示出了良好的稳定性和准确性,因为对罐体型汉密尔顿系统使用了静脉冲方法。从矢量潜力中获取的磁场是自然无差异的。进行了一些数字实验,以验证和比较两种离散化。