A set $S\subseteq V$ of a graph $G=(V,E)$ is a dominating set if each vertex has a neighbor in $S$ or belongs to $S$. Dominating Set is the problem of deciding, given a graph $G$ and an integer $k\geq 1$, if $G$ has a dominating set of size at most $k$. It is well known that this problem is $\mathsf{NP}$-complete even for claw-free graphs. We give a complexity dichotomy for Dominating Set for the class of claw-free graphs with diameter $d$. We show that the problem is $\mathsf{NP}$-complete for every fixed $d\ge 3$ and polynomial time solvable for $d\le 2$. To prove the case $d=2$, we show that Minimum Maximal Matching can be solved in polynomial time for $2K_2$-free graphs.


翻译:一个图 $G=(V,E)$ 上的一个点集 $S\subseteq V$ 被称为支配集,如果每个顶点都有一个邻居在 $S$ 中或者它自己属于 $S$。支配集问题是给定一个图 $G$ 和一个整数 $k\geq 1$,判断 $G$ 是否有一个不超过 $k$ 个顶点的支配集。已知即使对于无爪图,该问题仍然是$\mathsf{NP}$完全的。本文对于固定直径 $d$ 的无爪图支配集问题进行了复杂性分析。我们证明对于固定的 $d\geq3$,问题具有 $\mathsf{NP}$ 完全性;对于 $d\leq2$,问题是可在多项式时间内解决的。为了证明 $d=2$ 的情况,我们证明了在 $2K_2$-free 图中 Minimum Maximal Matching 问题可以在多项式时间内解决。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
NP完备破解羊了个羊?
新智元
0+阅读 · 2022年10月10日
计算机科学家如何学会重新发明证明
大数据文摘
0+阅读 · 2022年5月31日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月4日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
NP完备破解羊了个羊?
新智元
0+阅读 · 2022年10月10日
计算机科学家如何学会重新发明证明
大数据文摘
0+阅读 · 2022年5月31日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员