This paper provides a serious attempt towards constructing a switching-algebraic theory for weighted monotone voting systems, whether they are scalar-weighted or vector-weighted. The paper concentrates on the computation of a prominent index of voting powers, viz., the Banzhaf voting index. This computation involves two distinct operations: (a) either Boolean differencing (Boolean differentiation) or Boolean quotient construction (Boolean restriction), and (b) computation of the weight (the number of true vectors or minterms) of a switching function. We introduce novel Boolean-based symmetry-aware techniques for computing the Banzhaf index by way of four voting systems. The paper finally outlines further steps needed towards the establishment of a full-fledged switching-algebraic theory of weighted monotone voting systems. Througout the paper, a tutorial flavour is retained, multiple solutions of consistent results are given, and a liasion is established among game-theoretic voting theory, switching algebra, and sytem reliability analysis.
翻译:本文提供了一个严谨的研究尝试,探寻加权单调投票系统的开关代数理论,无论其是标量加权还是向量加权。本文着重于计算一种显著的投票权力指数——Banzhaf投票指数。该计算涉及两个不同的操作: (a)布尔差分(布尔微分)或布尔商构造(布尔限制),以及(b)计算开关函数的权重(真向量或最小项的数量)。我们介绍了一些新颖的基于布尔代数的对称感知技术,通过四个投票系统进行Banzhaf指数的计算。最后,本文概述了建立加权单调投票系统全面的开关代数理论所需的进一步步骤。在整个文章中,保留了教程风格,给出了多个一致结果的解决方案,并在游戏理论投票理论、开关代数和系统可靠性分析之间建立了关联。