Pruning techniques are used comprehensively to compress convolutional neural networks (CNNs) on image classification. However, the majority of pruning methods require a well pre-trained model to provide useful supporting parameters, such as C1-norm, BatchNorm value and gradient information, which may lead to inconsistency of filter evaluation if the parameters of the pre-trained model are not well optimized. Therefore, we propose a sensitiveness based method to evaluate the importance of each layer from the perspective of inference accuracy by adding extra damage for the original model. Because the performance of the accuracy is determined by the distribution of parameters across all layers rather than individual parameter, the sensitiveness based method will be robust to update of parameters. Namely, we can obtain similar importance evaluation of each convolutional layer between the imperfect-trained and fully trained models. For VGG-16 on CIFAR-10, even when the original model is only trained with 50 epochs, we can get same evaluation of layer importance as the results when the model is trained fully. Then we will remove filters proportional from each layer by the quantified sensitiveness. Our sensitiveness based pruning framework is verified efficiently on VGG-16, a customized Conv-4 and ResNet-18 with CIFAR-10, MNIST and CIFAR-100, respectively.


翻译:在图像分类方面,对压缩进化神经网络(CNNs)全面使用节制技术,压缩进化神经网络(CNNs)的图像分类。然而,大多数修剪方法都需要经过良好预先培训的模式,以提供有用的支持参数,如C1-诺尔姆、批量Norm值和梯度信息,如果未对预培训模型的参数进行最佳优化,可能会导致过滤评价不一致。因此,我们建议一种基于敏感的方法,从推断准确性的角度来评估每一层的重要性,方法是为原始模型增加额外的损害。由于准确性的表现取决于所有层的参数分布,而不是单个参数的分布,基于敏感度的基础方法将有力更新参数。也就是说,我们可以对不完善和受过充分训练的模型之间的每个进化层进行类似的重要评价。对于CIFAR-10的VGG-16,即使最初模型仅经过50个小节点的培训,我们也能得到与模型充分培训后的结果一样的层次重要性评价。然后,我们将通过量化的敏感度,从每个层中去除的过滤器,我们基于精度的敏感度和REAR-16分别与IM-CR的S-CRAR的精度框架进行有效的核查。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月3日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员