We introduce a novel regularization scheme for autoencoders based on matricial free energy. Our approach defines a differentiable loss function in terms of the singular values of the code matrix (code dimension x batch size). From the standpoint of free probability an d random matrix theory, this loss achieves its minimum when the singular value distribution of the code matrix coincides with that of an appropriately sculpted random metric with i.i.d. Gaussian entries. Empirical simulations demonstrate that minimizing the negative matricial free energy through standard stochastic gradient-based training yields Gaussian-like codes that generalize across training and test sets. Building on this foundation, we propose a matricidal free energy maximizing autoencoder that reliably produces Gaussian codes and show its application to underdetermined inverse problems.
翻译:暂无翻译