In this work, we propose fully nonconforming, locally exactly divergence-free discretizations based on lowest order Crouziex-Raviart finite element and piecewise constant spaces to study the optimal control of stationary double diffusion model presented in [B\"urger, M\'endez, Ruiz-Baier, SINUM (2019), 57:1318-1343]. The well-posedness of the discrete uncontrolled state and adjoint equations are discussed using discrete lifting and fixed point arguments, and convergence results are derived rigorously under minimal regularity. Building upon our recent work [Tushar, Khan, Mohan arXiv (2023)], we prove the local optimality of a reference control using second-order sufficient optimality condition for the control problem, and use it along with an optimize-then-discretize approach to prove optimal order a priori error estimates for the control, state and adjoint variables upto the regularity of the solution. The optimal control is computed using a primal-dual active set strategy as a semi-smooth Newton method and computational tests validate the predicted error decay rates and illustrate the proposed scheme's applicability to optimal control of thermohaline circulation problems.
翻译:暂无翻译